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Abstract 

By using the Laplace transform on the Takagi-Taupin 
equations for three coupled waves in a perfect crystal 
it has been possible to obtain general boundary-value 
Green functions for the wave fields Do, Dh and Dg. 
For a crystal shaped as a parallelepiped the integrated 
power Ph is calculated in the kinematical limit by 

0108-7673/87/030361-09501.50 

suitable integrations over one divergence angle and 
over the entrance and exit surfaces. The result, which 
is expressed as a function of the deviation from the 
Bragg condition for the third wave, is continuous 
through the three-beam point, and gives the expected 
asymmetry associated with the invariant phase of the 
product of the three structure factors involved. The 
asymptotic behaviour is the same as that obtained 
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362 THREE-BEAM DIFFRACTION IN A FINITE PERFECT CRYSTAL 

from pseudo-two-beam formulations based on stan- 
dard plane-wave theories. In the expression for the 
integrated power the dimensions of the crystal, scaled 
to appropriate extinction lengths, occur as param- 
eters. The movement of the reciprocal-lattice point g 
owing to the rotation of the crystal when Ph is to be 
measured is taken explicitly into account. When this 
movement is negligible or small, it is found that the 
diffracted power in the vicinity of the three-beam 
point shows oscillations due to a functional depen- 
dence corresponding to the Laue interference func- 
tion. Both Umweganregung and Aufhellung situations 
are covered. 

Introduction 

Many-beam X-ray diffraction, and especially three- 
beam diffraction, is of importance in structural analy- 
sis for two main reasons: (i) the possibility offered 
for experimental determination of phases of reflec- 
tions from single crystals; (ii) the need for correcting 
intensity data from effects which cause deviation from 
standard two-beam kinematical theory. The last point 
is of special importance when accurate structure fac- 
tors are necessary, for instance in charge density 
studies. 

Here we shall focus our attention on the invariant- 
phase information of structure factors which appears 
in the primary diffracted intensity near a three-beam 
point. Early works of Lipscomb (1949), Miyake & 
Kambe (1954), Kambe (1957) and Hart & Lang (1961) 
showed that the intensity of diffracted beams (both 
for X-rays and electrons) was affected by the relative 
phases of the structure factors involved. Later works 
concerning X-ray diffraction, especially by Colella 
(1974), Post (1977, 1979, 1983), Chapman, Yoder & 
Colella (1981), Chang (1981, 1982a, b, 1984, 1986), 
Chang & Valladares (1985) Juretschke (1982a, b, 
1984), Hcfier & Aanestad (1981), Hgfier & Marthinsen 
(1983) and Hiimmer & Billy (1982, 1986), have 
explored different topics related to multiple diffrac- 
tion and the phase problem in detail. These works 
use the plane-wave dynamical theory of X-ray diffrac- 
tion [cf. Batterman & Cole (1964) or Pinsker (1978)] 
as a starting point for the analysis, and the many-beam 
effects are usually associated with perturbations of 
the ordinary two-beam dispersion-surface branches. 

In this work we have chosen Takagi-Taupin wave 
equations (Takagi 1962, 1969; Taupin 1964) for 
description of the dynamical scattering processes. By 
using these equations it is possible in a straightfor- 
ward way to examine dynamical three-beam diffrac- 
tion effects in finite crystals. 

Here absorption and coupling of different polariz- 
ation states have been neglected and the calculations 
have been performed with a crystal shaped as a 
parallelepiped with edges defined by the three wave 
vectors involved. These simplifications are mainly for 

mathematical convenience as our main purpose has 
been to show the potential inherent in the Takagi- 
Taupin formalism. 

Boundary-value Green functions for the wave fields 

Field equations and boundary conditions 

By combining Maxwell's equation for the electrical 
displacement field 

V x V x {1/[ 1 + xe(r)]}D(r, t) = - ( 1 / c  2) O2D(r, O/Off 

(1) 

with the Fourier expansion of the periodic electrical 
susceptibility 

Xe(r) = ~ Xq exp (-2~'iq. r) (2) 
q 

and the plane-wave expansion 

D(r, t )=~,Dp(r)exp[21ri(vt-kp.r)]  (3) 
P 

to first order in X one obtains the Takagi-Taupin 
equations (Takagi, 1962, 1969; Taupin 1964; Authier, 
Malgrange & Tournarie 1968) for a perfect crystal: 

(i/~r)(kp. V)Op = [ K2(1 + Xo)- k2]Dp 

+ ~ Xp-q[k~Dq-(kp. Dq)kp] • 
q~P 

(4) 

Here K is the wave number of the incoming vacuum 
wave, K = l/A, and kp is a crystal wave vector, i.e. 

kp = ko + p, (5) 

p being a reciprocal-lattice vector. 
At this point the following assumptions are made: 
(i) Effects associated with refraction and average 

absorption are neglected. Thus Xo -= 0. 
(ii) Any interactions between different polariz- 

ation states (i.e. d- and -~) of the vector amplitudes 
{Dq} are neglected. 

(iii) Friedel's law is fulfilled, i.e. X*p-q = Xq-p; thus 
anomalous absorption effects are not included. 

These assumptions will greatly simplify the mathe- 
matical treatment, and the constraints imposed 
thereby will be considered in more detail in future 
work. With respect to (ii) numerical analysis by 
Aanestad (1979) has shown that when ~--~" coupling 
terms are omitted an error of about 5% will arise in 
the calculated dispersion-surface branches. The same 
assumption is also made in pseudo-two-beam calcula- 
tions, cf Hgfier & Marthinsen (1983). Chang (1986) 
has shown that anomalous scattering has effects on 
the determination of invariant phases in near-absorp- 
tion-edge multiple diffraction, an aspect which as a 
consequence of (iii) is not covered in the present 
work. 
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The Takagi-Taupin equations are then written 

ODp/Os,= 2~ri{lk, l -  KIDp 

- w i K  E Xp_q(~.~,.~q)Oq (6) 
q#p 

where sp is a coordinate along the base vector ~p = 
k~/k~l, and Dp is the component of the wave field 
along the polarization vector ~ (~ or ,~). 

By introducing the following quantities 

,~,, = {Ik,,I- K }  (7a) 
xpq = -zrKX~_q(~. ~q)= xpq[ exp (iq~_s) (7b) 

we can write 

ODp/Os~ = 2¢riapDp + i ~, rpqDq. (8) 
q#p 

a~ is equal to the excitation error, the distance from 
reciprocal point p to the Ewald sphere, and 1/IKpq I 
is equal to the extinction length. Explicitly, 

I r p q l = ( r e A / V c )  Fp_q(ep .eq)  I. (9) 

Here re is the classical electron radius, Vc the unit-cell 
volume and Fq the structure factor of reflection q. 
When the first term on the right-hand side of (8) is 
removed by the phase transformation 

we obtain the set of equations 

ODp/Osp=i E Kt, qOq. (11) 
q~p 

In the  case of three-beam interaction, i.e. p, q e 
(o, h, g), the equations become: 

ObolOso = iKohbh + iKog;Og (12a) 

O D h /  OS h -" iKhoL)o d- iKhgDg (12b) 

O Dg/ Osg = iKgoDo + iKghDh. (12C) 

TO obtain a solution to this set of equations, the 
boundary conditions must be specified. Restricting 
ourselves to Laue diffraction the so-called boundary- 
value Green functions are obtained by applying the 
conditions: 

Do(O, Sh, Sg)-" 6(Sh)6(Sg ) (13a) 

Dh(So, O, sg)=O (lab) 

Dg(so, Sh, O)=O. (13C) 

The same boundary conditions will also apply to the 
fields {/Sp}. 

Method of  solution 

With the given boundary conditions it is possible 
to obtain the solutions for the wave fields by applying 
the Laplace-transform technique. The transformation 

of the fields is written 

oo oo oo 
Dp(to, th, tg)= I dso I dSh I dsg;Op(So, Sh, Sg) 

0 0 0 

x exp [ - (  toSo + thsh + tssg)] 

= L3{D,(so, Sh, Sg)} (14) 

with p e (o, h, g). 
Performing a Laplace transformation of Takagi's 

equation (12) using boundary conditions (13), we 
arrive at the following set of algebraic equations: 

o o .lIoo] [!1 
--iKho th --iKhgll /5. = . 

- % o  - i , , , ,  t ,  .IL b ~  

The expressions for the transformed fields are then 
obtained by Cramer's rule 

b o  1 
=~i-X 

thtg + rhsrgh ] 
iKhotg -- KhgKg o J" 
iKgot h -- KghKho 

(16) 

Explicitly, the determinant of the system matrix A 
becomes 

det A = tothtg + yhgto + yogth + ~ohtg "~ iFohg 

where 

and 

(17) 

(18a) 

(18b) 

(18e) 

I"ohg --  KhoKogKg h -~- KohKgoKhg 

= 21Kho IIK~o II Kh=l COS (~h + ~g + ~_~) 
= 2lKhollKgollKhgl cos ~0~ (18d) 

with ~0~ as the invariant sum of phases of the three 
structure factors involved. The fields/Sp(so, Sh, S 8) are 
now found by the inverse Laplace transformation 

E)v(so, Sh, S s) = [ 1/(2¢ri) 3] ~J~ dto dth dtg ~)v(to, th, t 8) 
{L} 

x exp (toSo + thSh + tssg) 

= L3'{Dt,(to, th, tg)}, (19) 

where the paths of integrations {L} are to the right 
of all poles in Dp. Notice that a similar approach was 
used by Kato (1980) in his work on the statistical 
dynamical theory of crystal diffraction. 
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Results 
Without presenting the mathematical details* we 

give the final results for the wave fields:t 

Do(So, s~, s~)= ~(s~)8(s~)-[(  ~,o~SoS~)l/2/s~] 

x Sl[2(ro~SoS~)l/2]8(Sh) 

-[(ro~SoS~)'/2/s~] 

X .1,[ 2( ~/ohSoSh )ll2]8( S~) 
co 

+ ~ E (--i)k(1/k!l[)(1/ShSg) 
k=0 /=0 

X J2t+k-l{2[( TogSo + ~/hgSh)Sg] 1/2} 
[(3,ogSo + VhgSh)S~] (2t+k-1)/2 

Jl+k-l[  2( ")/ohSoSh )1 /2]  
X 

( ,YohSoSh )(t+k-1)/2 

X ( I"ohgSoShSg ) k ( ,)/hgShSg )! ( ,YogSoSg )!; 

(20a) 

Dh ( So, Sh, Sg)= iKhoJo[ 2('YohSoSh ) l/2]t~( Sg ) 
oo 

+ ~ ~ (-i)k(1/kll!)  
k=0 !=0 

(iKho J2t+k-l{2[( 7ogSo + 7hgSh)Sg] !/2} X - -  
\ s= [(~,o=So + ~'h~Sh)S~] (2~÷~-1)/2 

Jr+ k [2( 'YohSoSh )1/2]  
X 

( ,YohSoSh )( l+k)/2 

J21+ k { 2[ ( ~logSo "31- rhgSh ) Sg ] 1/2} 
-- KhgKg° [( ~ogSo + 'YhgSh)Sg] (21+k)/2 

Ji+k[2( 3/ohSoSh)l/Z]~ 
x (~ohSoS~)(t+k)12 } 

X (l"ohgSoShSg)k( ~/hgShSg )t( ,YogSoSg )1; 

(20b) 

Dg(So, Sh, Sg)= iKgoJo[2 ( 7ogsosg)i/2]8(sh) 
(3O O0 

+ ~ ~ (-i)k(1/kll l)  
k=0 !=0 

/ iKgo J2t+k{2[(7ogSo + ~/hgSh)Sg] 1/2} 
X \ Sh [ (  'YogSo + "YhgSh)Sg] (21+k)/2 

Jl+k-l[  2( "YohSoSh )1 /2]  
X 

('YohSoSh ) ( i+k-1)/2 

* Details of the intermediate mathematical calculations have 
been deposited with the British Library Document Supply Centre 
as Supplementary Publication No. SUP 43522 (8 pp.). Copies may 
be obtained through The Executive Secretary, International Union 
of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

t Since the expressions for the wave fields correspond to a source 
given by a Dirac function, a more appropriate name would be 
wave-field densities. 

iKgo (.YhgShSe) 
Sh 

J2t+k+l{2[('ro~So + rh~Sh)s,] 1/2} X 
[ ('YogSo "3 I- ~/hgSh ) Sg ] (21+ k +1)/2 

Jl+k[ 2('YohSoSh ) l/2] 
X ( ,YohSoSh ) (l+k)/2 

J2i+k {2[ ( ~/o~So + ')/hgSh )Sg] 1/2} 
- -  KghKho [(,YogSo "3 L ~/hgSh)Sg] (21+k)/2 

Jt+k[ 2( TohSoSh ) l/2]~ 
X (~/ohSoSh)(l+k)/2 ] 

X ( l"1ohgSoShSg ) k ( .YhgShSg )! ( .YogSoSg )i. (20c) 

These expressions should then be multiplied by the 
unit step functions O(So)O(Sh)O(ss) as the wave fields 
are zero outside the pyramid defined by the unit 
vectors ~o, Sh and ~g. In the three-beam case the 
diffraction equations (12) and the boundary condi- 
tions (13) are symmetric with respect to the indices 
h and g. Thus an alternative expression for /3~ can 
be obtained from (20b) through permutation of h and 
g. The equivalence of the expression for Dg with the 
one given in (20c) can be proved by series expansion. 

It is readily shown that the solutions for the wave 
fields satisfy the partial differential equations (12). 
Furthermore we obtain the limits 

IimDo(U, Sh, Sg)=8(Sh)8(Sg) (21a) 
u~0  

while 

lim Dh(So, u, s,)= .iKho D-(2)o (So, Sg) + iKh~D~2)(So, Sg) u~O 
(21b) 

and 

lim Dg(So, Sh, U)= iKgoD~)(So, Sh)+ iKghD~h2)(So, Sh) u--.O 
(21c) 

where the fields D~)(So, sp) and D~2)(so, sp), pc  
{h, g}, are the standard expressions for the two-beam 
wave fields (Kato, 1974; Bremer & Thorkildsen, 
1986). The limiting expression for Dh (Dg) gives the 
field values after a unique diffraction into the Sh (Sg) 
direction. In an analysis of two-beam diffraction a 
corresponding result was found by Becker (1977). 

To compare with results previously obtained, the 
general solutions should be evaluated in the limits (i) 
Yog -~ 0 and (ii) 'Yhg ''> 0. In both cases the only term 
in the double sum which survives is the one with 
k = l = 0. The expressions for the wave field Dh in the 
two cases become: 
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(i) 

Dh(so, Sh, Sg) = iKho{Jo[2( %hSoSh)i/2]8(Sg) 

- [ ( YhgShSg)'/2/Ss ]Jo[ 2( %hSoSh ),/2] 

X -/1[ 2( yhgShSg)'/2]}; (22a) 

(ii) 

Dh(So, Sh, S g ) =  iKho{Jo[2( yohSoSh)il2]8(Sg) 

- [ ( yo~SoSg) '/2/ Sg]Jo[ 2( yohSoS~ ) '/2] 

x J,[ 2( yosSoSg)'12]}. ( 22b ) 

These results are in perfect agreement with those 
obtained using integral equations (Bremer & 
Thorkildsen, 1986). 

Integrated power for a crystal with the shape of a 
parallelepiped 

Power as a function of  excitation errors 

The crystal considered in this work is cut in the 
shape of a parallelepiped confined by the unit vectors 
~o, ~h and ~g. The actual dimensions are lo, lh and Is 
along the corresponding directions (Fig. 1). The field 
amplitude Dh at a point P, (so(P), lh, sg(P)), on the 
exit surface due to a point source at S, 
(0, Sh(S), sg(S)), on the entrance surface is given by 

Dh ( P <-" S) = D~f ) i~o [ J0[ 2( YohAoah ) '/2] 8 (A s) 

o o  tad 

÷ ~ ~ ( - i )k (1 /k t lO 
k=0 1=0 

(~g  J21+k-l{2[('y°gA°'i-')/hgAh)Ag]l/2} 
× [ ('YogAo "k "yhgAh)Ag] (2l+k-1)12 

Jl+k[ 2( 'Yoh A o~h ) l/2] 
X (,YohAoAh)(l+k)/2 

s9 B V ^ 

/ : / 
./.- / 

: . . ' 1  . . . . . .  

. "  / / / l o  

t h 

Fig. 1. Actual crystal cut in the shape of  a parallelepiped. The 
unit vectors So, ~h and ~g are parallel to OR, OC and OA. The 
crystal dimensions are IORI=/o,  I o c l = / h  and IOAl=/g. 
Entrance surface is OABC, exit surface is CBVW. 

iKhgKg° J21+k { 2E ( ~ogAo + ~hgAh ) Ag] 1/2} 
Kho [('YogAo +')/hgAh)Ag] (21+k)/2 

S,+~[2(~o~A~)'/2]~ 

x (ro~l~ag) ~(r~ga~zg)'(rogz~l~)'] 
x exp (2¢i'iOthAh) exp (2wiotgAg) 
x O(Ao)O(Ah)O(Ag). (23) 

Here D~o ") is the amplitude of the incoming vacuum 
wave and 

/to = so(P) - so(S) = so(P) (24a) 

Ah=Sh(P)--Sh(S)=lh--Sh(S)  (24b) 

Ag = Sg( P) - sg( S), (24c) 

where the last equality applies to the actual crystal 
geometry. 

The lowest-order expansion of (23) becomes 

D h (P <-- S) = D~o e) iKho [ ( 1 - "YohAoAlh )8(Ag) -- TogAo 

- ehgLlh + i(IKhgllKgolllKhol) 
X exp (-igo:~)] exp (2"n'iahAh) 

X exp (2~riotgAg). (25) 

Now the field Dh(P) due to an incoming plane wave 
is obtained by integrating (25) over the entrance [cf. 
Bremer & Thorkildsen (1986)]: 

O h ( P ) = J l d S . ~ o O h ( P < - S ) .  (26) 

The Jacobian J is introduced to transform the source 
Dirac field density function from a representation in 
coordinates (tl, t2) normal to the incident direction 
to the coordinates Sh and Sg; explicitly, 

J =  IO(so, Sh, Sg)lO(So, t,, t2) I. (27) 

However, this factor is cancelled when the surface 
integration is performed using a coordinate system 
spanned by So, Sh and §g. Expressed in the new coor- 
dinates Ah and A s the field Dh(P) becomes 

lh sgtP) 
Dh(P) = J dab dagDh(P<- S). (28) 

o o 

Since we have the amplitude of the diffracted wave 
at P, we can calculate the beam intensity 

Ih(P) = Dh(P)D*(P).  (29) 

The power Ph is then obtained by integrating Ih over 
the exit surface: 

Ph = ~ dP. ~hlh ( P ) 
lo t~ 

= J - '  ~ dAo ~ dsg(P)Ih(P). (3_0) 
o o 
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With the following set of dimensionless quantities: 

I~o.I 2 -  "Yohlolh (31a) 

It log 2 = yoglolg (31 b) 

[l~hg 2 ~--- ~hglhlg (31 C) 

~h = 2 7rahlh (31d) 

~g = 27rag/g, (31e) 

the power is expressed as 

P~ = P~(~, ~)  

= IoViKhoi21h{Ef,(~h)--inoh 2fl(~:h) 
- 4(I no~ ll ,7,,~ll l no,,I)[ cos ~P~f , ( fh )f2( ~g ) 

- s i n  ~ f , (~ : , , ) f , ( f , , ) ] -  2 no,,12f,(f,.)f,(f~) 
-2  nh~ 2[f,(fh)f,(f,,)+A(f,,)f2(f,)] 
+4( ,~o,1~,~,21.0o,,12)f,(fh)A(f.)}. (32) 

Here Io = D(oe)] 2 is the intensity of the incident beam, 
and v is the volume of the crystal (v = J-11olhlg). The 
functions f~ are given by 

f l ( u ) = ( 1 / u 2 ) ( 1 - c o s  u )=½s in2 (u /2 ) / (u /2 )  2 (33a) 

f2(u) = (1/u)[ 1 - (1 /u )  sin u] (33b) 

f3(u) = (1/u2)[ 1 - ( 1 / u )  sin u]) (33c) 

A(u )=(1 /u2 ) [ s in  u - ( 2 / u ) ( 1 - c o s  u)]. (33d) 

In fact fl (~:h) and fl (~:g) are the Laue interference 
functions evaluated in the vicinity of the reciprocal- 
lattice points h and g respectively. One of the interest- 
ing aspects of (32) is that the power depends on the 
invariant phase sum 0:~. Notice especially the combi- 
nation of cos 0z and the odd function f2(~:g) which 
varies with ~:~ for large values of ~:g, thus having 
long-range effect. This is the basis for using three- 
beam diffraction to obtain phase information and will 
be discussed in more detail later on. Another point 
that should not be overlooked is that (32) represents 
only a second-order approximation, being a series 
expansion up to the order of =. This limits its 
usefulness to cases where I r/I < 1, or in other words 
to cases where the crystal dimensions do not exceed 
the extinction lengths involved. Thus (32) should be 
viewed as the kinematical limit of the diffracted 
power. 

Integrated power 

In what follows we shall assume the diffraction 
conditions usually employed with a four-circle 
diffractometer with ~o and ~h defining the diffraction 
plane. As pointed out by H0ier & Marthinsen (1983), 
the excitation errors ot h and a~ will depend on two 
external divergence angles which give the position of 
the incident wave vector relative to the Laue point. 

At the diffractometer three-beam diffraction is studied 
using the so-called ~b-scan technique (Busing & Levy, 
1967), i.e. by rotating the crystal around the 
reciprocal-lattice vector h. Thus it is convenient to 
use the angle ~b together with the angles el and e2, 
which give the horizontal and vertical divergence of 
the incoming beam, as independent variables in the 
expressions for the excitation errors. From the 
definition (7a) it follows that 

ap=§p. Ap, p~(h ,g) ,  (34) 

where A p denotes the deviation from the exact Bragg 
position for the reciprocal-lattice point p. Using the 
angle definitions given in Fig. 2 [cf. Zachariasen 
(1945)], we find for infinitesimal rotations 

ah = (sin 20oh/A)el (35a) 

ag = ag($) + (cos Xg sin ~oogl A )e~ - (sin xgl A )e 2 

ag( $) + ( Kog sin 20og/ A )e~. (35b) 

The geometrical factor, Kpq in general, has been 
defined by Moon & Shull (1964): 

Kvq = cos Xp cos Xq sin ~ppq/sin 20pq. (35c) 

In what follows we shall not explicitly take the vertical 
divergence into consideration in our calculations; e2 
will be set to zero. Equations (35a) and (35b) show 
that normally both ah and ag will depend on the 
horizontal divergence. The integrated power is now 
obtained by integrating (32) with respect to e~. 

o o  

Ph(~g) = S de, Ph[~h(el), srg(ei)] 
- - 0 0  

= Iov Kho 2(A/sin 20oh) 

X {1--½[rloh 2--2( ~o, ll ~hg/l~ohl) 
x[cos ~J2(~:~)- sin cJl(~:g)] 

- Ino.12~,(~~)- Inh.12[ ~',(~.) + ~4(~.)] 

+ 2( no. 2in,,. 2/n0,,12)6(~.)}, 
with 

(36) 

(37a) 

Furthermore, with the quantity X as parameter, 

X=lKogsin2OoJSin2Oohl(lJlh), (37b) 

the functions fi become 

f l (u)=(1/u2)(1-cos  u) 

+ ( X / u 2 ) [ l + c o s u - ( 2 / u ) s i n u ]  (38a) 

f2(u) = (1/u)[ 1 - ( 1 / u )  sin u] 

+(X/u2)[sin u - ( 2 / u ) ( 1 - c o s  u)] (38b) 

f3(u)=(1/u2)[1- ( l / u )  sin u] 

+(X/u2)[½+(sin u ) / u - ( 3 / u 2 ) ( 1 - c o s  u)] 

(38c) 
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fa(U) = (X/u2){  1 + cos u - ( 2 / u )  sin u 

- X [ c o s  u - 4 ( s i n  u ) / u + ( 6 / u 2 ) ( 1 - c o s  u)]}. 
(38d) 

These expressions are valid for X < 1. The relevant 
expressions for X >  1 are given in the Appendix. 
Notice that for X = 0 the functions ¢~ are identical to 
the functions f~, i = 1, 2, 3, which is obvious as X = 0 
corresponds to the situation where the excitation error 
for the secondary beam (kg) does not depend on e~. 

The term in (36) proportional to It/oh] 2 is the first- 
order correction of the integrated power due to 
primary extinction. This term will be neglected from 
now on. Introduccing P~, for the kinematical two- 
beam integrated power 

P~ = Iov Kho]2A/sin 20oh, (39) 

we have for the relative change in the integrated power 
due to three-beam interaction: 

aPh( '~g)l P~, = --2(lno, ll nh, lllnohl) 
X [COS ,p~ & ( ~ ) - s i n  ~ f~(~:~)] 

+ 2(I,7o, (40) 
This expression is the key result and shows how phase 
information can be obained from measurements of 
integrated power for various values of #~, i.e. by 
changing the excitation error for beam g. 

In all three cases X = 0, Le. Kog = 0; thus the position 
of the reciprocal-lattice point g relative to the Ewald 
sphere is not affected by rotation of the crystal. The 
invariant phase sum ~pv has been given the values 0 
(a), 180 (b), 90 (c) and 270 ° (d). Case (i) corresponds 
to what is usually called Umweganregung, case (ii) 
to Aufhellung, while case (iii) is an intermediate state. 
Notice the different scales along the ordinate axis in 
the three figures. 

It is clear that these profiles carry phase informa- 
tion. For a centrosymmetric crystal we find that when 
the reciprocal-lattice point g is in a position inside 
the Ewald sphere corresponding to a negative value 
of eg, the integrated power is enhanced when q~v = 0 
and reduced with respect to the two-beam result when 
q~x = 180 °, and vice versa for a positive value of eg. 
This result corresponds to the sign rule proposed by 
Chang (1982a). 

The factor which determines the asymptotic 
behaviour of the diffraction profiles for a centrosym- 
metric crystal is the combination of cos ~px and the 
odd function f2 which varies asymptotically as ~:~. 
This is in accordance with results obtained from 
dynamical plane-wave theory (Juretschke 1982a, b; 
H~ier & Marthinsen 1983). 

In the case of a non-centrosymmetric crystal 
Juretschke (1982b), using a pseudo-two-beam treat- 
ment, has discussed some asymptotic aspects of the 
diffraction profile in the vicinity of the three-beam 

D i s c u s s i o n  

In Figs. 3-5 we have shown the results for the relative 
change in the integrated power in three different 
cases:  

(i) ~oh1=0.05,1~o,=0.4, ,7h,1=0.4 (Fig. 3) 

( i i)  r/ohl = 0 .4 ,  Irtos = 0 -05 ,  = 0 . 4  (Fig. 4) 
(iii) rlohl=0"05, 1 o,1=0.05, =0.4  (Fig. 5). 

A 

=° I ~.g .-" 

ao / 

x\\ 

Fig. 2. Definitions of the angles involved .when calculating how 
the excitation errors depend on the beam divergence and crystal 
rotation. 
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Fig. 3. Relative change in integrated power as function.of gs. 
I~ohl=0.05, 1~o~1=0.4, Inh~l=0"4; X=0. (a) tpx=0; (b) ez = 
180; (c) tpx=90; (d) q~z=270 °. 
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Fig. 4. Relative change in integrated power as functions of ~:g. 
1'7oh1=0"4, IWo~l=0"05, [r/hg[=0"4; X=0.  (a) ~x=0; (b) ~ox= 
180; (c) c0x=90; (d) ~x=270 °. 

point. However, as is seen from Figs. 3-5 for ~Ox = 90 
and 270 ° , it is of importance to have information of 
the diffracted power at the exact three-beam point, 
where the pseudo-two-beam formulation diverges. 
Notice that phase information is also carried by the 
first-order term proportional to (sin ~0x)f~. Since f~ 
varies with ~g2 this term becomes important close to 
the three-beam point. W h e n  ~g ~ 0 both first- and 
second-order contributions become impo~ant ,  their 
relative weight being determined by the [r/ s. The fact 
that the diffraction power is symmetric in ~:g when 
~0x = 90 a n d  270 ° is known from plane-wave dynami- 
cal theory, e.g. Ewald & H6no (1968).  

For a finite crystal we have shown that the natural 
parameters in three-beam diffraction are ratios o f  
crystal dimensions to extinction lengths, the I rt[ 
parameters, and the natural variables are products of 
crystal dimensions and excitation errors, the ~¢ vari- 
ables, all being dimensionless. Thus in addition to 
structure factors and crystal orientation, crystal 
dimension shows up as a very important quantity 
when the perturbation of the two-beam power is to 
be calculated. This aspect is not covered by standard 
dynamical plane-wave theory, and shows the useful- 
ness of  Takagi's (1962, 1969) formulation. 

The discussion so far is based on the assumption 
that X = 0 .  Fig.  6 shows one example o f  how the 
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three-beam profiles are influenced by the movement 
of the reciprocal-lattice point g. The finer details of  
the diffraction profiles are now smeared-out, and the 
three-beam effect is reduced. Thus in cases where the 
crystal dimensions are very anisotropic, which implies 
large values of X, it can be difficult to extract phase 
information from the profile measurements. 

Concluding remarks 

The work presented here shows the usefulness of the 
Takagi-Taupin formalism in treating three-beam 
diffraction in a perfect finite crystal. With the limita- 
tions imposed on the system the wave field inside the 
crystal is obtained by using the Laplace-transform 
technique. The integrated power is then calculated 
through a series expansion combined with suitable 
integrations. Thus the procedure followed corre- 
sponds to the one generally used in work on extinc- 
tion, cfi Kato (1976) and Becker (1977). The calcula- 
tions, which are straightforward, although rather 
lengthy, give analytical results which are not obtained 
with standard plane-wave theory. 

The extension of the formalism to mosaic crystals 
will be discussed in a forthcoming paper (Thorkildsen 
& Mo, 1987). Furthermore, within the present formal- 
ism, one should think of extensions to cases where 
absorption effects become important. 

The author is indebted to Professor R. H¢ier for 
hours of stimulating discussion on the dynamical 
theory of X-ray diffraction. 

APPENDIX 

Expressions for the functions f~(u) when X > 1 

fl(u)=(1/u2)[1 +cos  (u/x)] 
+ (X/u2)[1 - c o s  (u/X) 

- (2/u)  sin (u/X)] (A1) 

f2(u) = (1/u)[  1 + (1/u)  sin (u/X)]+ (X/u 2) 

x { - s in  (u/X)-(2/u)[1-cos (u/X)]} 
(A2) 

f 3 ( U ) = ( 1 / U 2 ) [ 1  +COS (u/X)-(1/2X) cos (u/X) 

+ (2/u) sin (u/X)] 
+ (X/u:){½[ 1 - cos (u / X)  ] 

-(2/u)sin(u/X) 
- ( 3 / u : ) [  1 - c o s  (u/X)]} (A3) 

f4(u) = (X/u2)(1 +cos  (u/X)-(1/X) cos (u/X) 
+ (4/u)  sin (u/X) 
+ X{-(2/u) sin (u/X)-(6/u 2) 

x [1-cos (u/X)]}). (A4) 

All integrations leading to the expressions for ~ have 
been performed using a complex formulation with 
application of the residue theorem. 
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